MPD Multi-π Exclusive Samples

Tanaz Angelina Mohayai MPD Meeting Feb. 24, 2020

Two Param Reco Approaches – a reminder:

Edepsim parametrized reco:

Used old physics FD TDR-geometry (done by Tanaz, Justo, Chris M.)

Used edepsim instead of GEANT4

TEA (Tanaz, Eldwan, Andy) parametrized reco:

Uses new ND CDR-geometry

Includes rock interactions and overlays samples

Uses full GEANT4 simulation

Two Available Parametrized Reco

- Edepsim parametrized reco:
 - ★ v-interactions on Ar using GENIE & the optimized flux files from Nov. 2017
 + detector model using edep-sim + some relatively outdated geometry
 - ★ HPgTPC: uses Gluckstern to parametrize/Gaussian smear particle momentum for tracks in HPgTPC
 - ★ LAr TPC: Gaussian smears particle momentum in LAr TPC by 14%
- TEA parametrized reco:
 - ★ v-interactions on Ar, ECAL, passive components of MPD, rock surrounding the near detector hall using GENIE & the optimized flux files from Nov. 2017 + detector model using GEANT4 + new CDR geometries
 - ★ HPgTPC: uses Gluckstern to parametrize/Gaussian smear particle momentum for tracks in HPgTPC and for tracks that stop TPC, uses a range-based approach to Gaussian smear the momentum
 - ★ LAr TPC: TEA is not yet a module that gets integrated with LAr TPC since LAr TPC parametrized reconstruction is not yet developed

Pros and Cons

- Advantages of edepsim (since this talk primarily focuses on use of edepsim param reco for exclusive MPD channels):
 - **★** Only framework known to this point that includes **an integrated LAr and GAr reconstruction**
 - ★ Already being used extensively by the LBL group and S. Jones has been doing great work using these samples: https://indico.fnal.gov/event/23440/contribution/2/material/slides/0.pdf
- Caveats of edepsim:
 - ★ Original version of edepsim parametrized reco needed a lot of improvements to ensure apple-to-apple comparisons between MPD and LAr TPC
 - My changes to the original module:
 - Introduced a 2 cm threshold in LAr TPC
 - Changed HPgTPC threshold to 2 cm
 - Integrated approach in neutrino energy reconstruction in both TPCs (adding energies of FS particles event by event)
 - Realistic counting of pions in both TPCs

Momentum Resolution

• Both parametrized recos use the same smearing approach: smear p_{true} using the σ_p in the Gluckstern formula

• For stopping tracks, TEA uses range-based momentum smearing (not

implemented in edepsim param reco)

 $\left(\frac{\sigma_{P_{\perp}}}{p_{\perp}}\right)^{2} = \left(\frac{\sigma_{\text{point}} \ p_{\perp}}{0.3 \ B \ L^{2}} \sqrt{\frac{720}{N+4}}\right)^{2} + \left(\frac{0.05}{B \ L} \sqrt{\frac{1.43 \ L}{X_{0}}}\right)^{2}$ Scattering Term

 σ_p : 1e-3 m (distances between the readout pads)

B: 0.4 T

N: # of trackpoints (tracklength over distance between pads)

L: tracklength \perp to beam direction

 X_0 : 13 m

Detection Thresholds

• Threshold of 2 cm applied to both LAr and HPg TPCs

Updated v-Energy Reconstruction

- v-energy reconstruction via a particle-by-particle approach in both HPgTPC and LAr TPC edepsim reco
 - ★ Naively, assume we correctly identify pions 100% of the time in HPgTPC and in LArTPC and add pion mass into RecoEnu for both TPCs
- For now, used the truth level v_{μ} CC interactions

Pion Selection Efficiency – GAr vs LAr

- π selection in HPgTPC:
 - ★ Naively assume we get π 100% right for all momenta except momenta below HPgTPC detection threshold (> 2 cm tracklength, ~< 5 MeV)
 - ★ Sign tagging is only possible in HPgTPC because of magnetization
- π selection in LAr TPC:
 - ★ Also naively assume that we get π 100% right for all momenta except momenta below LAr TPC detection threshold (> 2 cm tracklength, ~< 40 MeV)

Pion Selection Efficiency – GAr vs LAr

- What do we learn from 1 π and 2 π selection efficiencies in HPgTPC and LArTPC:
 - ★ At first oscillation maximum (~2.5 GeV Ev), HPgTPC does a better job at reconstructing pions (likely low energy pions below LArTPC detection threshold) than LArTPC

HPgTPC, ν_{μ} CC 2π selection efficiency LAr TPC, ν_{μ} CC 2π selection efficiency

2020-02-24 T. A. Mohayai

Pion Selection Efficiency – GAr vs LAr

- What do we learn from > 2 π selection efficiencies in HPgTPC and LArTPC:
 - ★ Again, at first oscillation maximum (~2.5 GeV Ev), HPgTPC does a better job at reconstructing the three low energy primary pions that emerge from a neutrino interaction (likely these are pions below LArTPC detection threshold) than LArTPC

LAr TPC, v_{μ} CC > 2π selection

Pion Selection Efficiency – Sign Tagging in GAr

- π +/- selection in HPgTPC:
 - ★ Unlike LArTPC, in HPgTPC, we can do sign tagging; in FHC running mode, we can select both π + and π -

HPgTPC, ν_{μ} CC 1π + selection

HPgTPC, $\nu_{_{\rm u}}$ CC 1π – selection

Summary

- Comparison between the LAr TPC and HPgTPC samples following the latest modifications to the edepsim parametrized reconstruction is now done on an apple-to-apple basis
- A preliminary analysis of the edepsim samples indicates HPgTPC can be advantageous over LAr TPC in the following:
 - ★ Selection of lower energy final state pions (given the lower energy detection threshold in HPgTPC)
 - ★ Reconstructing the neutrino energy

Next Steps

- The TEA parametrized reco is advantageous in the sense that it is a lot more realistic in reconstructing pions but it is not integrated with an equivalent LAr TPC parametrized reconstruction (a more realistic parametrization of LAr TPC does not exist)
- Some level of work can be done on the edepsim parametrized reco (if as a group we think this is worth getting into? I guess a question for Steve M. and Mike K.) to bring it up to speed with the TEA parametrized reco:
 - ★ Generate new edepsim samples using the TEA GENIE files and TEA geometry
 - ★ Update the HPgTPC parametrized PID using Tom's parametrization of PIP-II dE/dx – the only caveat is that we would need a volunteer to do the same for LArTPC

Pion Selection Efficiency – Sign Tagging in GAr

- π +/- selection in HPgTPC:
 - ★ Unlike LArTPC, in HPgTPC, we can do sign tagging; in FHC running mode, we can select both π + and π -

HPgTPC, ν_{μ} CC 2π + selection

HPgTPC, ν_{μ} CC 2π – selection

Pion Selection Efficiency – Sign Tagging in GAr

- π +/- selection in HPgTPC:
 - ★ Unlike LArTPC, in HPgTPC, we can do sign tagging; in FHC running mode, we can select both π + and π -

HPgTPC, v_{μ} CC >2 π + selection

HPgTPC, ν_{u} CC >2π– selection

